首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61791篇
  免费   8566篇
  国内免费   5920篇
电工技术   5377篇
技术理论   6篇
综合类   6924篇
化学工业   6718篇
金属工艺   3969篇
机械仪表   5037篇
建筑科学   6181篇
矿业工程   2165篇
能源动力   3944篇
轻工业   1250篇
水利工程   2366篇
石油天然气   2899篇
武器工业   1030篇
无线电   5515篇
一般工业技术   7880篇
冶金工业   1612篇
原子能技术   403篇
自动化技术   13001篇
  2024年   146篇
  2023年   1543篇
  2022年   2349篇
  2021年   2588篇
  2020年   2753篇
  2019年   2350篇
  2018年   2220篇
  2017年   2536篇
  2016年   2671篇
  2015年   2751篇
  2014年   3753篇
  2013年   3869篇
  2012年   4595篇
  2011年   4946篇
  2010年   3720篇
  2009年   3775篇
  2008年   3663篇
  2007年   4172篇
  2006年   3587篇
  2005年   3019篇
  2004年   2451篇
  2003年   2102篇
  2002年   1753篇
  2001年   1479篇
  2000年   1325篇
  1999年   1069篇
  1998年   873篇
  1997年   749篇
  1996年   633篇
  1995年   567篇
  1994年   489篇
  1993年   351篇
  1992年   292篇
  1991年   239篇
  1990年   192篇
  1989年   183篇
  1988年   140篇
  1987年   70篇
  1986年   65篇
  1985年   44篇
  1984年   39篇
  1983年   30篇
  1982年   25篇
  1981年   20篇
  1980年   25篇
  1979年   24篇
  1978年   5篇
  1977年   5篇
  1959年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.  相似文献   
22.
The gas purging states affect electricity output and energy storage capacity of unitized regenerative fuel cells. In this study, a model of unitized regenerative fuel cell is established. Cell voltages and operating temperatures influences on the dynamic distribution of thermal fluid during purging process and the discharge of residual liquid water in electrolytic cell mode are investigated. The motivation of the present study is better understanding the gas purging characteristics and its effect on reaction behaviors of unitized regenerative fuel cells. Simulation results reveal a significant influence of purging gas temperature on the water flooding and a great effect of operating voltage on the water diffusion. The operating temperature of electrolytic cell model almost has little effect on purging results at different cell temperature and the same purging gas temperature. When the purging gas temperature is changed, higher temperatures of cell and purging gas facilitate liquid water discharging out from the cell regions. In cell water flooding situation, when having large liquid content, the purging gas has little effects on the water expelling process.  相似文献   
23.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
24.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
25.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
26.
Developing highly efficient and stable noble metal-free electrocatalysts with excellent catalytic surface for oxygen evolution reactions (OER) is an essential link for stimulating hydrogen generation from water electrolysis. Herein, the scalloped nickel/iron vanadium oxide coated vanadium dioxide (named as VO2@NFVO) has been successfully decorated via a urea-induced chemical etching-reconstruction process in the alkaline solution containing Fe2+ and Ni2+. Corresponding experimental measurements clearly show that favorable chemical etching occurs with the formation of new phases (eg, Ni3V2O8, FeVO4), which make it expose a large number of active sites and regulate the electron density of the active center, thus thereby dramatically enhancing the electrocatalytic performance by promoting electron transfer and optimizing the adsorption energy of reaction intermediates. Under optimized condition, the obtained VO2@NFVO delivers excellent activity merely with smaller overpotential of 290 mV at 10 mA cm?2, outperforming benchmark RuO2 catalyst in an alkaline solution. Moreover, its superior durability is verified by chronoamperometry testing. This simple etching-reconstruction strategy opens a new avenue for the preparation of vanadium-based electrocatalysts.  相似文献   
27.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   
28.
Adjusting the band gap of organic-inorganic composites by chemical bonding can effectively construct Step-scheme (S-scheme) heterojunctions, featuring properties of fast photogenerated charge migration and excellent photocatalytic performance. In this work, a novel perylene-3, 4, 9, 10-tetracarboxylicdiimide (PDI)-titanium dioxide (TiO2) heterojunction is elaborately synthesized through simple solvent compounding method. The monodispersed spherical TiO2 nanoparticles was prepared with the capping agents of oleylamine and oleic acid, and suffered by a ligand exchange process with nitrosonium tetrafluoroborate (NOBF4) to remove oleylamine and oleic acid. The NOBF4 ligands were further replaced by PDI super molecular nanosheets to obtain two dimensional (2D)-zero dimensional (0D) PDI-TiO2 composites. TiO2 nanoparticles are evenly anchored on the surface of PDI nanosheets with intimate contact. The PDI-TiO2 composites has emerged considerably superior activity in hydrogen evolution. The highest hydrogen evolution rate for PDI-TiO2composites with the PDI weight percentage of 2.4% was 9766 μmol h?1 g?1 under solar light irradiation, which is 2.56 times of TiO2-NOBF4 catalyst. Moreover, PDI-TiO2 composites possess stoichiometric overall water splitting performance with H2 and O2 release rates of 238.20 and 114.18 μmol h?1 g?1. The superior photocatalytic performance of PDI-TiO2 composites can be attributed to the dramatic increase in visible and NIR light absorption caused by π-π stacking structure of PDI, the prevented charge recombination by the S-scheme heterojunction, and the enhanced oxygen evolution by the stronger oxidation capability of PDI. PDI supramolecular nanosheets may work as a novel functional support for many types of semiconductor nanomaterials as graphene, which will display a wide range of application prospects in the energy and environmental fields.  相似文献   
29.
Developing efficient, stable and ideal urea oxide (UOR) electrocatalyst is key to produce green hydrogen in an economical way. Herein, Ru doped three dimensional (3D) porous Ni3N spheres, with tannic acid (TA) and urea as the carbon and nitrogen resources, is synthesized via hydrothermal and low-temperature treated process (Ru–Ni3N@NC). The porous nanostructure of Ni3N and the nickel foam provide abundant active sites and channel during catalytic process. Moreover, Ru doping and rich defects favor to boost the reaction kinetics by optimizing the adsorption/desorption or dissociation of intermediates and reactants. The above advantages enable Ru–Ni3N@NC to have good bifunctional catalytic performance in alkaline media. Only 43 and 270 mV overpotentials are required for hydrogen evolution (HER) and oxygen evolution (OER) reactions to drive a current of 10 mA cm?2. Moreover, it also showed good electrocatalytic performance in neutral and alkaline seawater electrolytes for HER with 134 mV to drive 10 mA cm?2 and 83 mV to drive 100 mA cm?2, respectively. Remarkably, the as-designed Ru–Ni3N@NC also owns extraordinary catalytic activity and stability toward UOR. Moreover, using the synthesized Ru–Ni3N@NC nanomaterial as the anode and cathode of urea assisted water decomposition, a small potential of 1.41 V was required to reach 10 mA cm?2. It can also be powered by sustainable energy sources such as wind, solar and thermal energies. In order to make better use of the earth's abundant resources, this work provides a new way to develop multi-functional green electrocatalysts.  相似文献   
30.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号